Sparse Semidefinite Programming Relaxations for Large Scale Polynomial Optimization and Their Applications to Differential Equations
نویسنده
چکیده
منابع مشابه
Computation with Polynomial Equations and Inequalities Arising in Combinatorial Optimization
This is a survey of a recent methodology to solve systems of polynomial equations and inequalities for problems arising in combinatorial optimization. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions.
متن کاملMoment and SDP relaxation techniques for smooth approximations of nonlinear differential equations
Combining recent moment and sparse semidefinite programming (SDP) relaxation techniques, we propose an approach to find smooth approximations for solutions of nonlinear differential equations. Given a system of nonlinear differential equations, we apply a technique based on finite differences and sparse SDP relaxations for polynomial optimization problems (POP) to obtain a discrete approximatio...
متن کاملMoment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations
Combining recent moment and sparse semidefinite programming (SDP) relaxation techniques, we propose an approach to find smooth approximations for solutions of problems involving nonlinear differential equations. Given a system of nonlinear differential equations, we apply a technique based on finite differences and sparse SDP relaxations for polynomial optimization problems (POP) to obtain a di...
متن کاملEquality Based Contraction of Semidefinite Programming Relaxations in Polynomial Optimization
The SDP (semidefinite programming) relaxation for general POPs (polynomial optimization problems), which was proposed as a method for computing global optimal solutions of POPs by Lasserre, has become an active research subject recently. We propose a new heuristic method exploiting the equality constraints in a given POP, and strengthen the SDP relaxation so as to achieve faster convergence to ...
متن کاملSums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity
Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite programming (SDP) relaxations are ob...
متن کامل