Sparse Semidefinite Programming Relaxations for Large Scale Polynomial Optimization and Their Applications to Differential Equations

نویسنده

  • Martin Mevissen
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation with Polynomial Equations and Inequalities Arising in Combinatorial Optimization

This is a survey of a recent methodology to solve systems of polynomial equations and inequalities for problems arising in combinatorial optimization. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions.

متن کامل

Moment and SDP relaxation techniques for smooth approximations of nonlinear differential equations

Combining recent moment and sparse semidefinite programming (SDP) relaxation techniques, we propose an approach to find smooth approximations for solutions of nonlinear differential equations. Given a system of nonlinear differential equations, we apply a technique based on finite differences and sparse SDP relaxations for polynomial optimization problems (POP) to obtain a discrete approximatio...

متن کامل

Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations

Combining recent moment and sparse semidefinite programming (SDP) relaxation techniques, we propose an approach to find smooth approximations for solutions of problems involving nonlinear differential equations. Given a system of nonlinear differential equations, we apply a technique based on finite differences and sparse SDP relaxations for polynomial optimization problems (POP) to obtain a di...

متن کامل

Equality Based Contraction of Semidefinite Programming Relaxations in Polynomial Optimization

The SDP (semidefinite programming) relaxation for general POPs (polynomial optimization problems), which was proposed as a method for computing global optimal solutions of POPs by Lasserre, has become an active research subject recently. We propose a new heuristic method exploiting the equality constraints in a given POP, and strengthen the SDP relaxation so as to achieve faster convergence to ...

متن کامل

Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity

Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite programming (SDP) relaxations are ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010